On integral sum graphs with a saturated vertex
نویسندگان
چکیده
منابع مشابه
On integral sum graphs
A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f (u) + f (v) = f (w) for some node w in G. A node of G is called a saturated node if it is adjacent to every other node of G. We show that any integral sum graph which is not K3 has at most two saturated ...
متن کاملOn integral sum graphs
A graph is said to be a sum graph if there exists a set S of positive integers as its node set, with two nodes adjacent whenever their sum is in S. An integral sum graph is defined just as the sum graph, the difference being that S is a subset of 2~ instead of N*. The sum number of a given graph G is defined as the smallest number of isolated nodes which when added to G result in a sum graph. T...
متن کاملSupermagic graphs having a saturated vertex
A graph is called supermagic if it admits a labeling of the edges by pairwise different consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we establish some conditions for graphs with a saturated vertex to be supermagic. Inter alia we show that complete multipartite graphs K1,n,n and K1,2,...,2 are supe...
متن کاملRegular integral sum graphs
Given a set of integers S; G(S) = (S; E) is a graph, where the edge uv exists if and only if u+ v∈ S. A graph G = (V; E) is an integral sum graph or ISG if there exists a set S ⊂ Z such that G=G(S). This set is called a labeling of G. The main results of this paper concern regular ISGs. It is proved that all 2-regular graphs with the exception of C4 are integral sum graphs and that for every po...
متن کاملIntegral sum graphs from identification
The idea of integral sum graphs was introduced by Harary (1994). A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f(u) + f(v) = f(w) for some node w in G. A tree is said to be a generalized star if it can be obtained from a star by extending each edge to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2010
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-010-0061-z